Here you can get solutions of RS Aggarwal Solutions Class 10 Chapter 8 Trigonometric Ratios of Complementary Angles. These Solutions are part of RS Aggarwal Solutions Class 10. we have given RS Aggarwal Solutions Class 10 Chapter 8 Trigonometric Ratios of Complementary Angles download pdf.
RS Aggarwal Solutions Class 10 Chapter 8 Trigonometric Ratios of Complementary Angles
Exercise 8
Question 1.


Question 2:
Solution:
(i) LHS = cos81° – sin9°
= cos(90° -9°)- sin9°
= sin9° – sin9°
= 0
= RHS
(ii) LHS = tan71° – cot19°
=tan(90° – 19°) – cot19°
=cot19° – cot19°
=0
= RHS
(iii) LHS = cosec80° – sec10°
= cosec(90° – 10°) – sec(10°)
= sec10° – sec10°
= 0
= RHS
(iv) cosec^2 72° − tan^2 18° = 1
LHS = cosec^2 72° – tan^2 18°
= cosec^2 72° – tan2 (90 – 72)°
= cosec^2 72° – cot^2 72°
= 1 = RHS
(v) cos^2 75° + cos^2 15° = 1
LHS = cos^2 75° + cos^2 15°
= cos^2 75° + cos^2 (90 – 75)°
= cos^2 75° + sin^2 75°
= 1= RHS
(vi) tan^2 66° − cot^2 24° = 0
LHS = tan^2 66° − cot^2 24°
= tan^2 66° – cot^2 (90 – 66)°
= tan^2 66° – tan^2 66°
= 0
= RHS
(vii) sin^2 48° + sin^2 42° = 1
LHS = sin^2 48° + sin^2 42°
= sin^2 48° + sin^2 (90 – 48)°
= sin^2 48° + cos^2 48°
= 1
= RHS
(viii) cos^2 57° − sin^2 33° = 0
LHS = cos^2 57° − sin^2 33°
= cos^2 57° – sin^2 (90 – 57)°
= cos^2 57° – cos^2 57°
= 0
=RHS
(ix) (sin 65° + cos 25°)(sin 65° − cos 25°) = 0
LHS = (sin 65° + cos 25°)(sin 65° − cos 25°)
= sin^2 65° – cos^2 25°
= sin^2 65° – cos^2 (90 – 65)°
= sin^2 65° – sin^2 65°
= 0
=RHS
Question 3.
Solution:
(i) LHS = sin53° cos37° + cos53° sin37°
= sin53° cos(90° – 53°) + cos53° sin (90° – 53°)
= sin53° x sin53° + cos53° x cos53°
= sin^2 53° + cos^2 53°
= 1
= RHS
(ii) LHS = cos54° cos36° − sin54° sin36°
= cos54° cos36° − sin(90° -36°) sin(90° -54°)
= cos54° cos36° – cos36°cos54°
= 0
=RHS
(iii) LHS = sec70° sin20° + cos20° cosec70°
= sec(90° – 20°) sin20° + cos20° cosec(90° – 20°)
= cosec 20° sin20° + cos20° sec 20°
= 1 +1
= 2
=RHS
(iv) LHS = sin35° sin55° − cos35° cos55°
= sin(90° – 55°) sin(90° – 35°) − cos35° cos55°
= cos55° cos35° – cos35° cos55°
= 0
=RHS
(v) LHS = (sin72° + cos18°)(sin72° − cos18°)
=(sin^2 72° – cos^2 18°)
= (sin^2 72° – cos^2 (90° – 72°))
= sin^2 72° – sin^2 72°
= 0
=RHS
(vi) LHS = tan48° tan23° tan42° tan67°
=tan48° tan23° tan (90° – 48°) tan (90° – 23°)
= tan48° tan23° cot48° cot23°
= 1×1
= 1
=RHS
Question 4.
Solution:


(v)

Question 5.
Solution:
(i)
LHS = sin θ cos (90° – θ) + sin (90° – θ) cos θ
= sin θ sin θ + cos θ cos θ
= sin^2 θ + cos^2 θ
= 1
= R.H.S.
Hence proved.


(vi)

=(1+1)/(3×1)
= 2/3 = RHS
Hence proved.
(vii)
LHS = cot θ tan (90° -θ) – sec (90° – θ)cosec θ +√3tan 12°tan 60°tan 78°
= cot θ cot θ – cosec θ cosec θ +√3 tan 60° tan 12° tan 78°
= cot^2 θ – cosec^2 θ +√3 tan 60° tan 12° tan(90-12)°
= – (cosec^2 θ – cot^2 θ) +√3 tan 60° tan 12° cot 12°
= – 1 + √3(√3 × 1)
= – 1 + 3
= 2
= R.H.S.
Hence proved.
Question 6:
Solution:


Question 7:
Solution:
L.H.S.
= sin (70°+θ) — cos (20° — θ)
= sin (70°+θ) — cos [90°-(70° + θ)]
= sin (70°+θ) — sin (70° + θ)
= 0
= R.H.S.
Hence Proved.
(ii)
L.H.S.
= tan (55° — θ) — cot (35° + θ)
= tan (90°-(35° +θ)) — cot (35° + θ)
= cot (35° + θ) – cot (35° + θ)
= 0
=RHS
Hence Proved.
(iii)
L.H.S.
= cosec (67° + θ) — sec (23° — θ)
= cosec (67° + θ) – sec (90° —(23° + θ))
= cosec (67° + θ) – cosec (67° + θ)
= 0
=RHS
Hence Proved.
(iv)
L.H.S.
= cosec (65° + θ) — sec (25° — θ) — tan (55° — θ) + cot (35° + θ)
= cosec (65° + θ) — sec (90° – (65° + θ)) — tan (90° – (35° + θ)) + cot (35° + θ)
= cosec (65° + θ) — cosec (65° + θ)) — cot (35° + θ) + cot (35° + θ)
= 0
= R.H.S.
(v)
L.H.S.
= sin (50° +θ) — cos (40° — θ) + tan 1° tan 10° tan 80° tan 89°
= sin ((90°-(40° – θ)) — cos (40° — θ) + (tan 1° tan 89°)(tan10° tan 80°)
= cos (40° – θ) – cos (40° – θ) + {tan 1° tan (90°-1°)}{tan10° tan(90°-10°)}
= 0 + {(tan 1° cot 1°}{tan10° cot 10°}
= 0 + 1 = 1
= R.H.S.
Question 8.
Solution:

Question 9.
Solution:
Given function is : tanC+A2=cotB2
Sum of all the angles of a triangle = 180 degree
So, A + B + C = 180o
Or A + C = 180o – B
And, (A + C)/2 = (180o – B)/2 = 90o – B/2
Now, tan (A + C)/2 = tan(90o – B/2) = cot B/2
Hence Proved.
Question 10.
Solution:
cos 2θ = sin 4θ …(1)
We know that,
sin( 90° – θ) = cos θ
So, equation (1) can be written as
sin (90° – 2θ) = sin 4θ
On comparing both sides
90° – 2θ = 4θ
90° = 4θ + 2θ
6θ = 90°
or θ = 15°
The value of θ is 15°
Question 11:
Solution: Given: sec2A = cosec(A − 42°)

The value of angle A is 44 degrees.
Question 12:
Solution:
sin 3 A = cos (A − 26°) (given)
or cos (90° – 3A) = cos (A – 26°)
On comparing
90° – 3A = A – 26°
A + 3A = 90° + 26°
4A = 116° = 29°
The value of A is 29°.
Question 13:
Solution:
tan 2A = cot (A – 12°)
or cot (90° – 2A) = cot (A – 12°)
On comparing
90° – 2A = A – 12 °
A + 2A = 90° + 12°
3A = 102°
A = 34°
The value of A is 34°
Question 14:
Solution: sec 4A = cosec (A – 15°)
or cosec (90° – 4A) = cosec (A – 15°)
On comparing
90° – 4A = A – 15°
A + 4A = 90° + 15°
5A = 105°
A = 21°
The value of A is 21°.
Question 15:
Solution:
= 2/3 cosec^2 58°- 2/3 cot 58° tan 32° – 5/3 tan 13° tan 37° tan 45° tan 53° tan 77°
= 2/3 cosec^2 58°- 2/3 cot 58° tan (90-58)° – 5/3 tan 45° (tan 13° tan 77°) (tan 37° tan 53°)
= 2/3 cosec^2 58°- 2/3 cot 58° cot 58° – 5/3 × 1 x (tan 13° tan (90-13)°) × (tan 37° tan (90-37)°)
= 2/3 cosec^2 58°- 2/3 cot^2 58° – 5/3 × (tan 13° cot 13°) (tan 37° cot 37°)
= 2/3 [cosec^2 58°- cot^2 58°] – 5/3
= (2/3) – (5/3)
= -1
= R.H.S.
Complete RS Aggarwal Solutions Class 10
If You have any query regarding this chapter, please comment on below section our team will answer you. We Tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share ncertsolutionsfor.com to your friends.
Best of Luck For Your Future!!