In this chapter, we provide RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities for English medium students, Which will very helpful for every student in their exams. Students can download the latest RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities pdf, free RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities book pdf download. Now you will get step by step solution to each question.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.1
Question 1.
Evaluate each of the following using identities:
(i) (2x –(frac { 1 }{ x }))2
(ii) (2x + y) (2x – y)
(iii) (a2b – b2a)2
(iv) (a – 0.1) (a + 0.1)
(v) (1.5.x2 – 0.3y2) (1.5x2 + 0.3y2)
Solution:
Question 2.
Evaluate each of the following using identities:
(i) (399)2
(ii) (0.98)2
(iii) 991 x 1009
(iv) 117 x 83
Solution:
Question 3.
Simplify each of the following:
Solution:
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y.
Solution:
9x2 + 25y2 = 181, and xy = -6
(3x + 5y)2 = (3x)2 + (5y)2 + 2 x 3x + 5y
⇒ 9X2 + 25y2 + 30xy
= 181 + 30 x (-6)
= 181 – 180 = 1
= (±1 )2
∴ 3x + 5y = ±1
Question 8.
If 2x + 3y = 8 and xy = 2, find the value of 4X2 + 9y2.
Solution:
2x + 3y = 8 and xy = 2
Now, (2x + 3y)2 = (2x)2 + (3y)2 + 2 x 2x x 3y
⇒ (8)2 = 4x2 + 9y2 + 12xy
⇒ 64 = 4X2 + 9y2 + 12 x 2
⇒ 64 = 4x2 + 9y2 + 24
⇒ 4x2 + 9y2 = 64 – 24 = 40
∴ 4x2 + 9y2 = 40
Question 9.
If 3x -7y = 10 and xy = -1, find the value of 9x2 + 49y2
Solution:
3x – 7y = 10, xy = -1
3x -7y= 10
Squaring both sides,
(3x – 7y)2 = (10)2
⇒ (3x)2 + (7y)2 – 2 x 3x x 7y = 100
⇒ 9X2 + 49y2 – 42xy = 100
⇒ 9x2 + 49y2 – 42(-l) = 100
⇒ 9x2 + 49y2 + 42 = 100
∴ 9x2 + 49y2 = 100 – 42 = 58
Question 10.
Simplify each of the following products:
Solution:
Question 11.
Solution:
Question 12.
Solution:
Question 13.
Simplify each of the following products:
Solution:
Question 14.
Prove that a2 + b2 + c2 – ab – bc – ca is always non-negative for all values of a, b and c.
Solution:
∵ The given expression is sum of these squares
∴ Its value is always positive Hence the given expression is always non-negative for all values of a, b and c
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.2
Question 1.
Write the following in the expanded form:
Solution:
Question 2.
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + be + ca.
Solution:
a + b+ c = 0
Squaring both sides,
(a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 0
16 + 2(ab + bc + c) = 0
⇒ 2(ab + bc + ca) = -16
⇒ ab + bc + ca =-(frac { 16 }{ 2 }) = -8
∴ ab + bc + ca = -8
Question 3.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
= 16 + 2 x 10
= 16 + 20 = 36
= (±6)2
∴ a + b + c = ±6
Question 4.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (9)2 = a2 + b2 + c2 + 2 x 23
⇒ 81= a2 + b2 + c2 + 46
⇒ a2 + b2 + c2 = 81 – 46 = 35
∴ a2 + b2 + c2 = 35
Question 5.
Find the value of 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx when x = 4, y = 3 and z = 2.
Solution:
x = 4, y – 3, z = 2
⇒ 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx
= (2x)2 + (y)2 + (5z)2 + 2 x2 x x y-2 x y x 5z – 2 x 5z x 2x
= (2x + y- 5z)2
= (2 x 4 + 3- 5 x 2)2
= (8 + 3- 10)2
= (11 – 10)2
= (1)2 = 1
Question 6.
Simplify:
(i) (a + b + c)2 + (a – b + c)2
(ii) (a + b + c)2 – (a – b + c)2
(iii) (a + b + c)2 + (a – b + c)2 + (a + b – c)2
(iv) (2x + p – c)2 – (2x – p + c)2
(v) (x2 + y2 – z2)2 – (x2 – y2 + z2)2
Solution:


Question 7.
Simplify each of the following expressions:
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.3
Question 1.
Find the cube of each of the following binomial expressions:
Solution:
Question 2.
If a + b = 10 and ab = 21, find the value of a3 + b3.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)3 = (10)3
⇒ a3 + 63 + 3ab (a + b) = 1000
⇒ a3 + b3 + 3 x 21 x 10 = 1000
⇒ a3 + b3 + 630 = 1000
⇒ a3 + b3 = 1000 – 630 = 370
∴ a3 + b3 = 370
Question 3.
If a – b = 4 and ab = 21, find the value of a3-b3.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)3 = (4)3
⇒ a3 – b3 – 3ab (a – b) = 64
⇒ a3-i3-3×21 x4 = 64
⇒ a3 – 63 – 252 = 64
⇒ a3 – 63 = 64 + 252 =316
∴ a3 – b3 = 316
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Question 8.
Solution:
Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 21y3.Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)3 = (13)3
⇒ (2x)3 + (3y)3 + 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18xy(2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18 x 6 x 13 = 2197
⇒ 8X3 + 27y3 + 1404 = 2197
⇒ 8x3 + 27y3 = 2197 – 1404 = 793
∴ 8x3 + 27y3 = 793
Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)3 = (11)3
⇒ (3x)3 – (2y)3 – 3 x 3x x 2y(3x – 2y) =1331
⇒ 27x3 – 8y3 – 18xy(3x -2y) =1331
⇒ 27x3 – 8y3 – 18 x 12 x 11 = 1331
⇒ 27x3 – 8y3 – 2376 = 1331
⇒ 27X3 – 8y3 = 1331 + 2376 = 3707
∴ 2x3 – 8y3 = 3707
Question 11.
Evaluate each of the following:
(i) (103)3
(ii) (98)3
(iii) (9.9)3
(iv) (10.4)3
(v) (598)3
(vi) (99)3
Solution:
We know that (a + bf = a3 + b3 + 3ab(a + b) and (a – b)3= a3 – b3 – 3 ab(a – b)
Therefore,
(i) (103)3 = (100 + 3)3
= (100)3 + (3)3 + 3 x 100 x 3(100 + 3) {∵ (a + b)3 = a3 + b3 + 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)3 = (100 – 2)3
= (100)3 – (2)3 – 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)3 = (10 – 0.1)3
= (10)3 – (0.1)3 – 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)3 = (10 + 0.4)3
= (10)3 + (0.4)3 + 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)3 = (600 – 2)3
= (600)3 – (2)3 – 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)3 = (100 – 1)3
= (100)3 – (1)3 – 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299
Question 12.
Evaluate each of the following:
(i) 1113 – 893
(ii) 463 + 343
(iii) 1043 + 963
(iv) 933 – 1073
Solution:
We know that a3 + b3 = (a + bf – 3ab(a + b) and a3 – b3 = (a – bf + 3 ab(a – b)
(i) 1113 – 893
= (111 – 89)3 + 3 x ill x 89(111 – 89)
= (22)3 + 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)3 – (a – b)3 = 2(b3 + 3a2b)
= 1113 – 893 = (100 + 11)3 – (100 – 11)3
= 2(113 + 3 x 1002 x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)3 + (a- b)3 = 2(b3 + 3ab2)
(ii) 463 + 343 = (40 + 6)3 + (40 – 6)3
= 2[(40)3 + 3 x 40 x 62]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 1043 + 963 = (100 + 4)3 + (100 – 96)3
= 2 [a3 + 3 ab2]
= 2[(100)3 + 3 x 100 x (4)2]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 933 – 1073 = -[(107)3 – (93)3]
= -[(100 + If – (100 – 7)3]
= -2[b3 + 3a2b)]
= -2[(7)3 + 3(100)2 x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686
Question 13.
Solution:
Question 14.
Find the value of 27X3 + 8y3 if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = (frac { 14 }{ 9 })
Solution:
Question 15.
Find the value of 64x3 – 125z3, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)3 = (16)3
⇒ (4x)3 – (5y)3 – 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 60 x 12 x 16 = 4096
⇒ 64x3 – 125z3 – 11520 = 4096
⇒ 64x3 – 125z3 = 4096 + 11520 = 15616
Question 16.
Solution:
Question 17.
Simplify each of the following:
Solution:
Question 18.
Solution:
Question 19.
Solution:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4
Question 1.
Find the following products:
(i) (3x + 2y) (9X2 – 6xy + Ay2)
(ii) (4x – 5y) (16x2 + 20xy + 25y2)
(iii) (7p4 + q) (49p8 – 7p4q + q2)
Solution:
Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
Solution:
Question 3.
If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)2 = (10)2
⇒ a2 + b2 + lab = 100
⇒ a2 + b2 + 2 x 16 = 100
⇒ a2 + b2 + 32 = 100
∴ a2 + b2 = 100 – 32 = 68
Now, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52
and a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84
Question 4.
If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)3 = (8)3
⇒ a3 + b3 + 3 ab{a + b) = 512
⇒ a3 + b3 + 3 x 6 x 8 = 512⇒ a3 + b3 + 144 = 512
⇒ a3 + b3 = 512 – 144 = 368
∴ a3 + b3 = 368
Question 5.
If a – b = 6 and ab = 20, find the value of a3-b3.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)3
⇒ a3 – b3 – 3ab(a – b) = 216
⇒ a3 – b3 – 3 x 20 x 6 = 216
⇒ a3 – b3 – 360 = 216
⇒ a3 -b3 = 216 + 360 = 576
∴ a3 – b3 = 576
Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
Solution:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.5
Question 1.
Find the following products:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(ii) (4x -3y + 2z) (16x2 + 9y2+ 4z2 + 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
Solution:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y + 2y x 2z + 2z x 3x]
= (3x)3 + (2y)3 + (2z)3 – 3 x 3x x 2y x 2z
= 27x3 + 8y3 + 8Z3 – 36xyz
(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y + (3y) x (2z) – (2z x 4x)]
= (4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)
= 64x3 – 27y3 + 8z3 + 72xyz
(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
= (2a -3b- 2c) [(2a)2 + (3b)2 + (2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
= (2a)3 + (3b)3 + (-2c)3 -3x 2a x (-3 b) (-2c)
= 8a3 – 21b3 -8c3 – 36abc
(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz)
= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]
= (3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)
= 27x3 – 64y3 + 125z3 + 180xyz
Question 2.
Evaluate:
Solution:
Question 3.
If x + y + z = 8 and xy + yz+ zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Solution:
We know that
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 -xy -yz – zx)
Now, x + y + z = 8
Squaring, we get
(x + y + z)2 = (8)2
x2 + y2 + z2 + 2(xy + yz + zx) = 64
⇒ x2 + y2 + z2 + 2 x 20 = 64
⇒ x2 + y2 + z2 + 40 = 64
⇒ x2 + y2 + z2 = 64 – 40 = 24
Now,
x3 + y3 + z3 – 3xyz = (x + y + z) [x2 + y2 + z2 – (xy + yz + zx)]
= 8(24 – 20) = 8 x 4 = 32
Question 4.
If a +b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9, ab + be + ca = 26
Squaring, we get
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒ a2 + b2 + c2 + 2 x 26 = 81
⇒ a2 + b2 + c2 + 52 = 81
∴ a2 + b2 + c2 = 81 – 52 = 29
Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)]
= 9[29 – 26]
= 9 x 3 = 27
Question 5.
If a + b + c = 9, and a2 + b2 + c2 = 35, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9
Squaring, we get
(a + b + c)2 = (9)2
⇒ a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
2(ab + bc + ca) = 81 – 35 = 46
∴ ab + bc + ca = (frac { 46 }{ 2 }) = 23
Now, a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)]
= 9[35 – 23] = 9 x 12 = 108
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions VSAQS
Question 1.
Solution:
Question 2.
Solution:
Question 3.
If a + b = 7 and ab = 12, find the value of a2 + b2.
Solution:
a + b = 7, ab = 12
Squaring both sides,
(a + b)2 = (7)2
⇒ a2 + b2 + 2ab = 49
⇒ a2 + b2 + 2 x 12 = 49
⇒ a2 + b2 + 24 = 49
⇒ a2 + b2 = 49 – 24 = 25
∴ a2 + b2 = 25
Question 4.
If a – b = 5 and ab = 12, find the value of a2 + b2 .
Solution:
a – b = 5, ab = 12
Squaring both sides,
⇒ (a – b)2 = (5)2
⇒ a2 + b2 – 2ab = 25
⇒ a2 + b2 – 2 x 12 = 25
⇒ a2 + b2 – 24 = 25
⇒ a2 + b2 = 25 + 24 = 49
∴ a2 + b2 = 49
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Algebraic Identities Class 9 RD Sharma Solutions MCQS
Question 1.
Solution:

Question 2.
Solution:
Question 3.
Solution:
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Question 8.
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
(a) 35
(b) 58
(c) 127
(d) none of these
Solution:
a + b + c = 9, ab + bc + ca = 23
Squaring,
(a + b+ c) = (9)2
a2 + b2 + c2 + 2 (ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2 x 23 = 81
⇒ a2 + b2+ c2 + 46 = 81
⇒ a2 + b2+ c2 = 81 – 46 = 35 (a)
Question 9.
(a – b)3 + (b – c)3 + (c – a)3 =
(a) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
(d) (a -b)(b- c) (c – a)
(c) 3(a – b) (b – c) (c – a)
(d) none of these
Solution:
(a – b)3 + (b- c)3 + (c- a)3
∵ a – b + b – c + c – a = 0
∴ (a – b)3 + (b – c)3 + (c – a)3
= 3 (a -b)(b- c) (c – a) (c)
Question 10.
Solution:
Question 11.
If a – b = -8 and ab = -12 then a3 – b3 =
(a) -244
(b) -240
(c) -224
(d) -260
Solution:
a – b = -8, ab = -12
(a – b)3 = a3 – b3 – 3ab (a – b)
(-8)3 = a3 – b3 – 3 x (-12) (-8)
-512 = a3-b3– 288
a3 – b3 = -512 + 288 = -224 (c)
Question 12.
If the volume of a cuboid is 3x2 – 27, then its possible dimensions are
(a) 3, x2, -27x
(b) 3, x – 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
Solution:
Volume = 3x2 -27 = 3(x2 – 9)
= 3(x + 3) (x – 3)
∴ Dimensions are = 3, x – 3, x + 3 (b)
Question 13.
75 x 75 + 2 x 75 x 25 + 25 x 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Solution:
Question 14.
(x – y) (x + y)(x2 + y2) (x4 + y4) is equal to
(a) x16 – y16
(b) x8 – y8
(c) x8 + y8
(d) x16 + y16
Solution:
Question 15.
Solution:
Question 16.
Solution:
Question 17.
Solution:
Question 18.
Solution:
Question 19.
If a2 + b2 + c2 – ab – bc – ca = 0, then
(a) a + b = c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Solution:
a2 + b2 + c2 – ab – bc – ca = 0
2 {a2 + b2 + c2 – ab – be – ca) = 0 (Multiplying by 2)
⇒ 2a2 + 2b2 + 2c2– 2ab – 2bc – 2ca = 0
⇒ a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒ (a – b)2 + (b – c)2 + (c – a)2 = 0
(a – b)2 = 0, then a – b = 0
⇒ a = b
Similarly, (b – c)2 = 0, then
b-c = 0
⇒ b = c
and (c – a)2 = 0, then c-a = 0
⇒ c = a
∴ a = b – c (d)
Question 20.
Solution:
Question 21.
Solution:
Question 22.
If a + b + c = 9 and ab + bc + ca = 23, then a3 + b3 + c3 – 3 abc =
(a) 108
(b) 207
(c) 669
(d) 729
Solution:
a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)
Now, a + b + c = 9
Squaring,
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒ a2 + b2 + c2 + 2 x 23 = 81
⇒ a2 + b2 + c2 + 46 = 81
⇒ a2 + b2 + c2 = 81 – 46 = 35
Now, a3 + b3 + c3 – 3 abc = (a + b + c) [(a2 + b2 + c2) – (ab + bc + ca)
= 9[35 -23] = 9 x 12= 108 (a)
Question 23.
Solution:
Question 24.
The product (a + b) (a – b) (a2 – ab + b2) (a2 + ab + b2) is equal to
(a) a6 + b6
(b) a6 – b6
(c) a3 – b3
(d) a3 + b3
Solution:
(a + b) (a – b) (a2 – ab + b2) (a2 + ab +b2)
= (a + b) (a2-ab + b2) (a-b) (a2 + ab + b2)
= (a3 + b3) (a3 – b3)
= (a3)2 – (b3)2 = a6 – b6 (b)
Question 25.
The product (x2 – 1) (x4 + x2 + 1) is equal to
(a) x8 – 1
(b) x8 + 1
(c) x6 – 1
(d) x6 + 1
Solution:
(x2 – 1) (x4 + x2 + 1)
= (x2)3 – (1)3 = x6 – 1 (c)
Question 26.
Solution:
Question 27.
Solution:
All Chapter RD Sharma Solutions For Class 9 Maths
*************************************************
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also sharencertsolutionsfor.com to your friends.